Last updated: 2020-02-20

Checks: 7 0

Knit directory: MHWNWA/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190513) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    LaTeX/SOM_node_summary.docx
    Ignored:    LaTeX/SOM_node_summary.pdf
    Ignored:    data/NAPA/NAPA_clim_U.Rda
    Ignored:    data/NAPA/NAPA_clim_V.Rda
    Ignored:    data/NAPA/NAPA_clim_W.Rda
    Ignored:    data/NAPA/NAPA_clim_emp_ice.Rda
    Ignored:    data/NAPA/NAPA_clim_emp_oce.Rda
    Ignored:    data/NAPA/NAPA_clim_fmmflx.Rda
    Ignored:    data/NAPA/NAPA_clim_mldkz5.Rda
    Ignored:    data/NAPA/NAPA_clim_mldr10_1.Rda
    Ignored:    data/NAPA/NAPA_clim_qemp_oce.Rda
    Ignored:    data/NAPA/NAPA_clim_qla_oce.Rda
    Ignored:    data/NAPA/NAPA_clim_qns.Rda
    Ignored:    data/NAPA/NAPA_clim_qsb_oce.Rda
    Ignored:    data/NAPA/NAPA_clim_qt.Rda
    Ignored:    data/NAPA/NAPA_clim_runoffs.Rda
    Ignored:    data/NAPA/NAPA_clim_ssh.Rda
    Ignored:    data/NAPA/NAPA_clim_sss.Rda
    Ignored:    data/NAPA/NAPA_clim_sst.Rda
    Ignored:    data/NAPA/NAPA_clim_taum.Rda
    Ignored:    data/NAPA/NAPA_clim_vars.Rda
    Ignored:    data/NAPA/NAPA_clim_vecs.Rda
    Ignored:    data/NAPA/synoptic_vec_states.Rda
    Ignored:    data/SOM/packet.Rda
    Ignored:    data/SOM/synoptic_states.Rda
    Ignored:    data/SOM/synoptic_states_other.Rda
    Ignored:    data/anom/ALL_anom.Rda
    Ignored:    data/anom/ALL_other.Rda
    Ignored:    data/anom/ERA5_mslp_anom.Rda
    Ignored:    data/anom/ERA5_qnet_anom.Rda
    Ignored:    data/anom/ERA5_t2m_anom.Rda
    Ignored:    data/anom/ERA5_u_anom.Rda
    Ignored:    data/anom/ERA5_v_anom.Rda
    Ignored:    data/anom/GLORYS_mld_anom.Rda
    Ignored:    data/anom/GLORYS_u_anom.Rda
    Ignored:    data/anom/GLORYS_v_anom.Rda
    Ignored:    data/anom/OISST_sst_anom.Rda
    Ignored:    data/base/ERA5_lhf.Rda
    Ignored:    data/base/ERA5_lwr.Rda
    Ignored:    data/base/ERA5_mslp.Rda
    Ignored:    data/base/ERA5_qnet.Rda
    Ignored:    data/base/ERA5_shf.Rda
    Ignored:    data/base/ERA5_swr.Rda
    Ignored:    data/base/ERA5_t2m.Rda
    Ignored:    data/base/ERA5_u.Rda
    Ignored:    data/base/ERA5_v.Rda
    Ignored:    data/base/GLORYS_mld.Rda
    Ignored:    data/base/GLORYS_u.Rda
    Ignored:    data/base/GLORYS_v.Rda
    Ignored:    data/base/OAFlux.Rda
    Ignored:    data/base/OISST_sst.Rda
    Ignored:    data/clim/ALL_clim.Rda
    Ignored:    data/clim/ERA5_mslp_clim.Rda
    Ignored:    data/clim/ERA5_qnet_clim.Rda
    Ignored:    data/clim/ERA5_t2m_clim.Rda
    Ignored:    data/clim/ERA5_u_clim.Rda
    Ignored:    data/clim/ERA5_v_clim.Rda
    Ignored:    data/clim/GLORYS_mld_clim.Rda
    Ignored:    data/clim/GLORYS_u_clim.Rda
    Ignored:    data/clim/GLORYS_v_clim.Rda
    Ignored:    data/clim/OISST_sst_clim.Rda
    Ignored:    data/comparison/node_mean_all_anom.Rda
    Ignored:    data/comparison/packet_all.Rda
    Ignored:    data/comparison/packet_all_anom.Rda
    Ignored:    data/comparison/packet_nolab.Rda
    Ignored:    data/comparison/packet_nolab14.Rda
    Ignored:    data/comparison/packet_nolabgsl.Rda
    Ignored:    data/comparison/packet_nolabmod.Rda
    Ignored:    data/comparison/som_all.Rda
    Ignored:    data/comparison/som_all_anom.Rda
    Ignored:    data/comparison/som_nolab.Rda
    Ignored:    data/comparison/som_nolab14.Rda
    Ignored:    data/comparison/som_nolab_16.Rda
    Ignored:    data/comparison/som_nolab_9.Rda
    Ignored:    data/comparison/som_nolabgsl.Rda
    Ignored:    data/comparison/som_nolabmod.Rda
    Ignored:    data/eddy_trajectory_2.0exp_19930101_20180118.nc
    Ignored:    talk/IMBeR_2019.html
    Ignored:    talk/MHWNWA.html

Unstaged changes:
    Modified:   code/functions.R
    Modified:   output/SOM/air_u_v_mslp_anom.pdf
    Modified:   output/SOM/air_u_v_mslp_real.pdf
    Modified:   output/SOM/cum_int_season.pdf
    Modified:   output/SOM/cum_int_season.png
    Modified:   output/SOM/duration_rate_onset.pdf
    Modified:   output/SOM/max_int_region.pdf
    Modified:   output/SOM/max_int_region.png
    Modified:   output/SOM/mld_anom_sd.pdf
    Modified:   output/SOM/msl_anom_sd.pdf
    Modified:   output/SOM/msl_sd.pdf
    Modified:   output/SOM/node_10_panels.pdf
    Modified:   output/SOM/node_10_panels.png
    Modified:   output/SOM/node_11_panels.pdf
    Modified:   output/SOM/node_11_panels.png
    Modified:   output/SOM/node_12_panels.pdf
    Modified:   output/SOM/node_12_panels.png
    Modified:   output/SOM/node_1_panels.pdf
    Modified:   output/SOM/node_1_panels.png
    Modified:   output/SOM/node_2_panels.pdf
    Modified:   output/SOM/node_2_panels.png
    Modified:   output/SOM/node_3_panels.pdf
    Modified:   output/SOM/node_3_panels.png
    Modified:   output/SOM/node_4_panels.pdf
    Modified:   output/SOM/node_4_panels.png
    Modified:   output/SOM/node_5_panels.pdf
    Modified:   output/SOM/node_5_panels.png
    Modified:   output/SOM/node_6_panels.pdf
    Modified:   output/SOM/node_6_panels.png
    Modified:   output/SOM/node_7_panels.pdf
    Modified:   output/SOM/node_7_panels.png
    Modified:   output/SOM/node_8_panels.pdf
    Modified:   output/SOM/node_8_panels.png
    Modified:   output/SOM/node_9_panels.pdf
    Modified:   output/SOM/node_9_panels.png
    Modified:   output/SOM/qnet_anom_sd.pdf
    Modified:   output/SOM/qnet_mld_anom.pdf
    Modified:   output/SOM/region_season.pdf
    Modified:   output/SOM/sst_anom_sd.pdf
    Modified:   output/SOM/sst_sd.pdf
    Modified:   output/SOM/sst_u_v_anom.pdf
    Modified:   output/SOM/sst_u_v_real.pdf
    Modified:   output/SOM/t2m_anom_sd.pdf
    Modified:   output/SOM/t2m_sd.pdf
    Modified:   output/SOM/u10_anom_sd.pdf
    Modified:   output/SOM/u10_sd.pdf
    Modified:   output/SOM/u_anom_sd.pdf
    Modified:   output/SOM/u_sd.pdf
    Modified:   output/SOM/v10_anom_sd.pdf
    Modified:   output/SOM/v10_sd.pdf
    Modified:   output/SOM/v_anom_sd.pdf
    Modified:   output/SOM/v_sd.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd c1d867f robwschlegel 2020-02-13 Poster sorted. Need to add a figure from tikoraluk.
Rmd e9d1b43 Robert William Schlegel 2020-02-13 Received feedback on poster, transitioning figure creation to a dedicated script to accomodate the specific changes necessary.
Rmd 9ee3ee4 robwschlegel 2020-02-13 Poster figures rendered
Rmd a3b88a8 Robert William Schlegel 2020-02-12 Working through a full edit of the workflowr site. This will seque into a write up of the draft manuscript.
Rmd 823a5fd robwschlegel 2019-08-28 Uploaded schematic summary figure and created a new version of the talk
html a7fbd91 robwschlegel 2019-08-28 Build site.
Rmd 59cf771 robwschlegel 2019-08-22 Polished up the variable prep vignette
Rmd e9767c7 robwschlegel 2019-08-22 Working through the pipeline to adapt to the decided methodoloy
html 826c73d robwschlegel 2019-08-15 Build site.
html 143b1a6 robwschlegel 2019-08-15 Build site.
html 20ae166 robwschlegel 2019-08-11 Build site.
html 19bea26 robwschlegel 2019-08-11 Build site.
html 2652a3a robwschlegel 2019-08-11 Build site.
html f0d2efb robwschlegel 2019-08-07 Build site.
Rmd 9a9fa7d robwschlegel 2019-08-01 A more in depth dive into the potential criteria to meet for the SOM model
html aa82e6e robwschlegel 2019-07-31 Build site.
Rmd 51ed681 robwschlegel 2019-07-25 Completed anoms for OISST
Rmd 0b6f065 robwschlegel 2019-07-25 Push before beginning to write code for loading entire obs/reanalysis products into memory for clim calculations
html 7792f24 robwschlegel 2019-07-24 Build site.
Rmd bcee698 robwschlegel 2019-07-24 Edited the polygon and sst prep vignettes while redoing methodology.
html 7cc8ec3 robwschlegel 2019-07-24 Build site.
Rmd 463b89a robwschlegel 2019-07-24 Edited the polygon and sst prep vignettes while redoing methodology.
html 81e961d robwschlegel 2019-07-09 Build site.
Rmd 497eeb2 robwschlegel 2019-07-09 Re-publish entire site.
Rmd 7ff9b8b robwschlegel 2019-06-17 More work on the talk
html c23c50b robwschlegel 2019-06-10 Build site.
html 028d3cc robwschlegel 2019-06-10 Build site.
html c61a15f robwschlegel 2019-06-06 Build site.
html 6dd6da8 robwschlegel 2019-06-06 Build site.
Rmd 25e7e9a robwschlegel 2019-06-05 SOM pipeline nearly finished
Rmd 94ce8f6 robwschlegel 2019-06-04 Functions for creating data packets are up and running
Rmd 65301ed robwschlegel 2019-05-30 Push before getting rid of some testing structure
Rmd 2c3f68c robwschlegel 2019-05-28 Working on the variable prep vignette
html 5cb8e8f robwschlegel 2019-05-28 Build site.
html c09b4f7 robwschlegel 2019-05-24 Build site.
Rmd 5dc8bd9 robwschlegel 2019-05-24 Finished initial creation of SST prep vignette.
Rmd e008b23 robwschlegel 2019-05-24 Push before changing
Rmd 5b6f248 robwschlegel 2019-05-23 More SST clomp work
Rmd 5c2b406 robwschlegel 2019-05-23 Commit before changes
html d544295 robwschlegel 2019-05-23 Build site.
Rmd 9cb3efa robwschlegel 2019-05-23 Updating work done on the polygon prep vignette.

Introduction

Building on the work performed in the study area vignette, we will now create grouped SST time series for the six regions in our study area. We do this by finding which NOAA OISST pixels fall within each of the region polygons. Also note that throughout this vignette (and this entire project) we will use the climatology period of 1993 – 2018 due to limitations from the data products used for the various heat budget variables needed for the SOM.

# Necessary when being run on a server without write privliges
.libPaths(c("~/R-packages", .libPaths()))

# Packages used in this vignette
library(tidyverse) # Base suite of functions
library(heatwaveR) # For detecting MHWs
# cat(paste0("heatwaveR version = ", packageDescription("heatwaveR")$Version))
library(FNN) # For fastest nearest neighbour searches
library(tidync) # For a more tidy approach to managing NetCDF data
library(SDMTools) # For finding points within polygons
library(lubridate) # For convenient date manipulation

# Set number of cores
doParallel::registerDoParallel(cores = 50)

# Disable scientific notation for numeric values
  # I just find it annoying
options(scipen = 999)

# Corners of the study area
NWA_corners <- readRDS("data/NWA_corners.Rda")

# Individual regions
NWA_coords <- readRDS("data/NWA_coords.Rda")

# The base map
map_base <- readRDS("data/map_base.Rda")

Pixel prep

Up first we take the lon/lat grid from the 1/4 degree daily NOAA OISST product and find which points fall within each region. We will save this information to allow us to then easily pull out the desired pixels from the cube of OISST data.

# Create the OISST lon/lat grid
OISST_grid <- data.frame(expand.grid(c(seq(0.125, 179.875, by = 0.25), 
                                       seq(-179.875, -0.125, by = 0.25)),
                                     seq(-89.875, 89.875, by = 0.25)))
colnames(OISST_grid) <- c("lon", "lat")

# Trim down OISST grid for faster processing
OISST_grid_region <- OISST_grid %>% 
  filter(lon >= min(NWA_coords$lon),
         lon <= max(NWA_coords$lon),
         lat >= min(NWA_coords$lat),
         lat <= max(NWA_coords$lat))

# Function for finding and cleaning up points within a given region polygon
pnts_in_region <- function(region_in){
  region_sub <- NWA_coords %>% 
    filter(region == region_in)
  coords_in <- pnt.in.poly(pnts = OISST_grid_region[1:2], poly.pnts = region_sub[2:3]) %>% 
    filter(pip == 1) %>% 
    dplyr::select(-pip) %>% 
    mutate(region = region_in)
  return(coords_in)
}

# Run the function
NWA_info <- plyr::ldply(unique(NWA_coords$region), pnts_in_region)
# saveRDS(NWA_info, "data/NWA_info.Rda")

# Visualise to ensure success
ggplot(NWA_coords, aes(x = lon, y = lat)) +
  geom_polygon(aes(fill = region), alpha = 0.2) +
  geom_point(data = NWA_info, aes(colour = region)) +
  geom_polygon(data = map_base, aes(group = group), show.legend = F) +
    coord_cartesian(xlim = NWA_corners[1:2],
                  ylim = NWA_corners[3:4]) +
  labs(x = NULL, y = NULL)

Version Author Date
a7fbd91 robwschlegel 2019-08-28
aa82e6e robwschlegel 2019-07-31
7792f24 robwschlegel 2019-07-24
7cc8ec3 robwschlegel 2019-07-24
5cb8e8f robwschlegel 2019-05-28
c09b4f7 robwschlegel 2019-05-24

SST prep

With the OISST pixels successfully assigned to regions based on their thermal properties we now average the SST data per pixel into one mean time series per region.

# The OISST data location
OISST_files <- dir("../../data/OISST", full.names = T)

# The files with data in the study area
OISST_files_sub <- data.frame(files = OISST_files,
                              lon = c(seq(0.125, 179.875, by = 0.25), 
                                      seq(-179.875, -0.125, by = 0.25))) %>% 
  filter(lon >= min(NWA_info$lon), lon <= max(NWA_info$lon)) %>% 
  mutate(files = as.character(files))

# Function for loading the individual OISST NetCDF files and subsetting SST accordingly
load_OISST_sub <- function(file_name, coords = NWA_info){
  res <- tidync(file_name) %>%
    hyper_filter(lat = dplyr::between(lat, min(coords$lat), max(coords$lat)),
                 time = dplyr::between(time, as.integer(as.Date("1993-01-01")),
                                       as.integer(as.Date("2018-12-31")))) %>%
    hyper_tibble() %>% 
    mutate(time = as.Date(time, origin = "1970-01-01")) %>% 
    dplyr::rename(temp = sst, t = time) %>% 
    select(lon, lat, t, temp) %>% 
    left_join(coords, by = c("lon", "lat")) %>% 
    filter(!is.na(region))
  return(res)
}

# Put it all together
system.time(
  OISST_region <- plyr::ldply(OISST_files_sub$files,
                              .fun = load_OISST_sub,
                              .parallel = TRUE) %>% 
    group_by(region, t) %>% 
    summarise(temp = mean(temp, na.rm = T)) %>% 
    ungroup()
) # 18 seconds

# Save
# saveRDS(OISST_region, "data/OISST_region.Rda")

MHW detection

With our clumped SST time series ready the last step in this vignette is to detect the MHWs within each.

# Load the time series data
OISST_region <- readRDS("data/OISST_region.Rda")

# Calculate MHWs
system.time(
  OISST_region_MHW <- OISST_region %>%
    group_by(region) %>%
    nest() %>%
    mutate(clims = map(data, ts2clm,
                       climatologyPeriod = c("1993-01-01", "2018-12-31")),
           events = map(clims, detect_event),
           cats = map(events, category, S = FALSE)) %>%
    select(-data, -clims)
) # 2 seconds
# saveRDS(OISST_region_MHW, "data/OISST_region_MHW.Rda")

With the MHWs detected, let’s visualise the results to ensure everything worked as expected.

# Load MHW results
OISST_region_MHW <- readRDS("data/OISST_region_MHW.Rda")

# Events
OISST_MHW_event <- OISST_region_MHW %>%
  select(-cats) %>%
  unnest(events) %>%
  filter(row_number() %% 2 == 0) %>%
  unnest(events)

MHW_lolli_plot <- ggplot(data = OISST_MHW_event , aes(x = date_peak, y = intensity_cumulative)) + 
        geom_lolli(colour = "salmon", colour_n = "red", n = 0) + 
  labs(x = "Peak Date", y = "Cum. Intensity (°C x days)") +
  scale_y_continuous(limits = c(0, 250), expand = c(0,0)) +
  facet_wrap(~region, ncol = 2)
# ggsave(plot = MHW_lolli_plot, filename = "output/MHW_lolli_plot.pdf", height = 6, width = 5)
# ggsave(plot = MHW_lolli_plot, filename = "output/MHW_lolli_plot.png", height = 6, width = 5)

# Visualise
MHW_lolli_plot

Version Author Date
a7fbd91 robwschlegel 2019-08-28
7cc8ec3 robwschlegel 2019-07-24
81e961d robwschlegel 2019-07-09
6dd6da8 robwschlegel 2019-06-06
c09b4f7 robwschlegel 2019-05-24

The lolliplot above shows us that the occurrence of MHWs differs visually between the regions, which is good. A striking early result from this figure is that the distribution of the occurrence of MHWs is left skewed. This means that most of the MHWs are happening later on in the time series. In fact, there are no MHWs detected in the first year of the time series (1993), and only four MHWs detected in the second year (1994) across all regions combined. We don’t start to see regular annual occurrence of MHWs until ~1999. This is a classic climate change signal. But it is important to note again that we are using a climatology period of 1993 – 2018 due to data limitations. This will have the effect of raising the mean climate signal up more than the established WMO period of 1981 – 2010. The practical effect of this is that we will have an even more pronounced skewness of extreme events towards the end of the time series and the overall intensities of events will be slightly lower.

Finally for this section we will visualise the regions from the previous vignette alongside the lolliplot created here.

# Note that the package cowplot is used below but not loaded explicitly
# This is because it changes the default plotting nature in ways I don't like

# The study area map from the revious vignette
load("output/NWA_study_area.Rdata")

# Merge the panels together
MHW_region_lolli <- cowplot::plot_grid(NWA_study_area, MHW_lolli_plot, labels = c('A)', 'B)'), label_size = 10,
                                       align = 'hv', rel_widths = c(1.2, 1), nrow = 1, axis = "l")
# ggsave(plot = MHW_region_lolli, filename = "output/MHW_region_lolli.pdf", height = 4, width = 10)
# ggsave(plot = MHW_region_lolli, filename = "output/MHW_region_lolli.png", height = 4, width = 10)
MHW_region_lolli

Up next in the heat budget variable preparation vignette we will go through the steps necessary to build the data that will be fed into our self-organising map (SOM) as seen in the SOM analysis vignette.

References


sessionInfo()
R version 3.6.2 (2019-12-12)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS

Matrix products: default
BLAS:   /usr/lib/openblas-base/libblas.so.3
LAPACK: /usr/lib/libopenblasp-r0.2.18.so

locale:
 [1] LC_CTYPE=en_CA.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_CA.UTF-8        LC_COLLATE=en_CA.UTF-8    
 [5] LC_MONETARY=en_CA.UTF-8    LC_MESSAGES=en_CA.UTF-8   
 [7] LC_PAPER=en_CA.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_CA.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.7.4      SDMTools_1.1-221     tidync_0.2.3        
 [4] FNN_1.1.2.1          heatwaveR_0.4.2.9001 forcats_0.4.0       
 [7] stringr_1.4.0        dplyr_0.8.4          purrr_0.3.3         
[10] readr_1.3.1          tidyr_1.0.2          tibble_2.1.3        
[13] ggplot2_3.2.1        tidyverse_1.3.0     

loaded via a namespace (and not attached):
 [1] httr_1.4.1         jsonlite_1.6.1     viridisLite_0.3.0  foreach_1.4.4     
 [5] R.utils_2.7.0      modelr_0.1.5       assertthat_0.2.1   cellranger_1.1.0  
 [9] yaml_2.2.1         pillar_1.4.3       backports_1.1.5    lattice_0.20-35   
[13] glue_1.3.1         digest_0.6.23      RColorBrewer_1.1-2 promises_1.1.0    
[17] rvest_0.3.5        colorspace_1.4-1   cowplot_0.9.3      plyr_1.8.5        
[21] htmltools_0.4.0    httpuv_1.5.2       R.oo_1.22.0        pkgconfig_2.0.3   
[25] broom_0.5.3        haven_2.2.0        scales_1.1.0       whisker_0.4       
[29] later_1.0.0        git2r_0.26.1       farver_2.0.3       generics_0.0.2    
[33] withr_2.1.2        lazyeval_0.2.2     cli_2.0.1          magrittr_1.5      
[37] crayon_1.3.4       readxl_1.3.1       evaluate_0.14      R.methodsS3_1.7.1 
[41] fs_1.3.1           ncdf4_1.17         fansi_0.4.1        doParallel_1.0.15 
[45] nlme_3.1-137       xml2_1.2.2         tools_3.6.2        data.table_1.12.8 
[49] hms_0.5.3          lifecycle_0.1.0    plotly_4.9.1       munsell_0.5.0     
[53] reprex_0.3.0       compiler_3.6.2     RNetCDF_2.1-1      rlang_0.4.4       
[57] grid_3.6.2         iterators_1.0.10   rstudioapi_0.10    htmlwidgets_1.5.1 
[61] labeling_0.3       rmarkdown_2.0      gtable_0.3.0       codetools_0.2-15  
[65] DBI_1.0.0          R6_2.4.1           ncmeta_0.2.0       knitr_1.27        
[69] workflowr_1.6.0    rprojroot_1.3-2    stringi_1.4.5      parallel_3.6.2    
[73] Rcpp_1.0.3         vctrs_0.2.2        dbplyr_1.4.2       tidyselect_1.0.0  
[77] xfun_0.12